Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
IEEE J Biomed Health Inform ; 24(10): 2798-2805, 2020 10.
Article in English | MEDLINE | ID: covidwho-2282971

ABSTRACT

Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE), AUC, precision and F1-score achieved by our method are 91.79%, 93.05%, 89.95%, 96.35%, 93.10% and 93.07%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/diagnosis , Tomography, X-Ray Computed/statistics & numerical data , COVID-19 , COVID-19 Testing , Computational Biology , Coronavirus Infections/classification , Databases, Factual/statistics & numerical data , Deep Learning , Humans , Neural Networks, Computer , Pandemics/classification , Pneumonia, Viral/classification , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , SARS-CoV-2
2.
IEEE J Biomed Health Inform ; PP2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2288661

ABSTRACT

Accurate and rapid detection of COVID-19 pneumonia is crucial for optimal patient treatment. Chest X-Ray (CXR) is the first-line imaging technique for COVID-19 pneumonia diagnosis as it is fast, cheap and easily accessible. Currently, many deep learning (DL) models have been proposed to detect COVID-19 pneumonia from CXR images. Unfortunately, these deep classifiers lack the transparency in interpreting findings, which may limit their applications in clinical practice. The existing explanation methods produce either too noisy or imprecise results, and hence are unsuitable for diagnostic purposes. In this work, we propose a novel explainable CXR deep neural Network (CXR-Net) for accurate COVID-19 pneumonia detection with an enhanced pixel-level visual explanation using CXR images. An Encoder-Decoder-Encoder architecture is proposed, in which an extra encoder is added after the encoder-decoder structure to ensure the model can be trained on category samples. The method has been evaluated on real world CXR datasets from both public and private sources, including healthy, bacterial pneumonia, viral pneumonia and COVID-19 pneumonia cases. The results demonstrate that the proposed method can achieve a satisfactory accuracy and provide fine-resolution activation maps for visual explanation in the lung disease detection. The Average Accuracy, Sensitivity, Specificity, PPV and F1-score of models in the COVID-19 pneumonia detection reach 0.992, 0.998, 0.985 and 0.989, respectively. Compared to current state-of-the-art visual explanation methods, the proposed method can provide more detailed, high-resolution, visual explanation for the classification results. It can be deployed in various computing environments, including cloud, CPU and GPU environments. It has a great potential to be used in clinical practice for COVID-19 pneumonia diagnosis.

3.
IEEE Trans Med Imaging ; 41(8): 2130-2143, 2022 08.
Article in English | MEDLINE | ID: covidwho-1722944

ABSTRACT

Deep neural networks are discovered to be non-robust when attacked by imperceptible adversarial examples, which is dangerous for it applied into medical diagnostic system that requires high reliability. However, the defense methods that have good effect in natural images may not be suitable for medical diagnostic tasks. The pre-processing methods (e.g., random resizing, compression) may lead to the loss of the small lesions feature in the medical image. Retraining the network on the augmented data set is also not practical for medical models that have already been deployed online. Accordingly, it is necessary to design an easy-to-deploy and effective defense framework for medical diagnostic tasks. In this paper, we propose a Robust and Retrain-Less Diagnostic Framework for Medical pretrained models against adversarial attack (i.e., MedRDF). It acts on the inference time of the pretrained medical model. Specifically, for each test image, MedRDF firstly creates a large number of noisy copies of it, and obtains the output labels of these copies from the pretrained medical diagnostic model. Then, based on the labels of these copies, MedRDF outputs the final robust diagnostic result by majority voting. In addition to the diagnostic result, MedRDF produces the Robust Metric (RM) as the confidence of the result. Therefore, it is convenient and reliable to utilize MedRDF to convert pretrained non-robust diagnostic models into robust ones. The experimental results on COVID-19 and DermaMNIST datasets verify the effectiveness of our MedRDF in improving the robustness of medical diagnostic models.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Neural Networks, Computer , Reproducibility of Results
4.
BMC Med Imaging ; 21(1): 154, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1546762

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) causes tens of million infection world-wide. Many machine learning methods have been proposed for the computer-aided diagnosis between COVID-19 and community-acquired pneumonia (CAP) from chest computed tomography (CT) images. Most of these methods utilized the location-specific handcrafted features based on the segmentation results to improve the diagnose performance. However, the prerequisite segmentation step is time-consuming and needs the intervention by lots of expert radiologists, which cannot be achieved in the areas with limited medical resources. METHODS: We propose a generative adversarial feature completion and diagnosis network (GACDN) that simultaneously generates handcrafted features by radiomic counterparts and makes accurate diagnoses based on both original and generated features. Specifically, we first calculate the radiomic features from the CT images. Then, in order to fast obtain the location-specific handcrafted features, we use the proposed GACDN to generate them by its corresponding radiomic features. Finally, we use both radiomic features and location-specific handcrafted features for COVID-19 diagnosis. RESULTS: For the performance of our generated location-specific handcrafted features, the results of four basic classifiers show that it has an average of 3.21% increase in diagnoses accuracy. Besides, the experimental results on COVID-19 dataset show that our proposed method achieved superior performance in COVID-19 vs. community acquired pneumonia (CAP) classification compared with the state-of-the-art methods. CONCLUSIONS: The proposed method significantly improves the diagnoses accuracy of COVID-19 vs. CAP in the condition of incomplete location-specific handcrafted features. Besides, it is also applicable in some regions lacking of expert radiologists and high-performance computing resources.


Subject(s)
COVID-19/diagnosis , Deep Learning , Diagnosis, Computer-Assisted/methods , Machine Learning , SARS-CoV-2 , Tomography, X-Ray Computed/methods , COVID-19/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL